Publications
2024
[94]
Closing PFAS Analytical Gaps: Inter-Method Evaluation of Total Organofluorine Techniques for AFFF-Impacted Water
Dixit, F.; Antell, E. H.; Faber, K. A.; Zhang, C.; Pannu, M. W.; Plumlee, M. H.; Van Buren, J.; Doroshow, A.; Pomerantz, W. C. K.; Arnold, W. A.; Higgins, C. P.; Peaslee, G. F.; Alvarez-Cohen, L.; Sedlak, D. L.; Ateia, M. Closing PFAS Analytical Gaps: Inter-Method Evaluation of Total Organofluorine Techniques for AFFF-Impacted Water. Journal of Hazardous Materials Letters. 2024, 5, 100122..
[93]
Allosteric Coupling Asymmetry Mediates Par F By Type II Inhibitors
Rasmussen, D. M.; Semonis, M. M.; Greene, J. T.; Muretta, J. M.; Thompson, A. R.; Ramos, S. T.; Thomas, D. D.; Pomerantz, W. C. K.; Freedman, T. S.; Levinson, N. M.; Allosteric coupling asymmetry mediates paradoxical activation of BRAF by type II inhibitors. eLife. 2024, 13:RP9548.
[92]
Fluorinated Pharmaceutical and Pesticide Photolysis: Investigating Reactivity and Identifying Fluorinated Products by Combining Computational Chemistry, 19F NMR, and Mass Spectrometry
Bhat, A. P.; Pomerantz, W. C. K.; Arnold, W. A. Fluorinated Pharmaceutical and Pesticide Photolysis: Investigating Reactivity and Identifying Fluorinated Products by Combining Computational Chemistry, 19F NMR, and Mass Spectrometry. Environ. Sci. Technol. 2024, 58 (7), 3437–3448.
[91]
Multivalent Fluorinated Nanorings for On-Cell 19F NMR
Li, J.; Wang, Y.; Distefano, Mark. D.; Wagner, C. R.; Pomerantz, W. C. K. Multivalent Fluorinated Nanorings for On-Cell 19F NMR. Biomacromolecules. 2024.
2023
[90]
Photolysis Products of Fluorinated Pharmaceuticals: A Combined 19F-NMR and Mass Spectrometry Approach
Mundhenke, T. F.; Bhat, A. P.; Pomerantz, W. C. K.; Arnold, W. A. Photolysis Products of Fluorinated Pharmaceuticals: A Combined 19F-NMR and Mass Spectrometry Approach. Environ. Toxicol. Chem. 2023.
[89]
Genetically-Encoded Discovery of Perfluoroaryl-Macrocycles that Bind to Albumin and Exhibit Extended Circulation in-vivo
J. Y.K. Wong, S. E. Kirberger R. Qiu, A. I. Ekanayake, P. Kelich, S. Sarkar, E. R. Alvizo-Paez, J. Miao, S. Kalhor-Monfared, J. J. Dwyer, J. M. Nuss, Y-S. Lin, M. S. Macauley, L. Vukovic, W.C.K. Pomerantz , R. Derda, 2023, Nat. Comm. Accepted
[88]
Fragment-Based NMR Screening of the BPTF PHD Finger Methyl Lysine Reader Leads to the First Small Molecule Inhibitors
Buchholz, C.; Sneddon, M.; McPherson, J.; Das, S.; Gee, C.; Grillo, M.; Chai, S.; Lee, R.; Chen, T.; Harki, D.; Shelat, A.; Pomerantz, W. Fragment-Based NMR Screening of the BPTF PHD Finger Methyl Lysine Reader Leads to the First Small Molecule Inhibitors. ChemRxiv. 2023, ACS Med. Chem. Lett. accepted.
[87]
Garcinolic acid distinguishes between GACKIX domains and modulates interaction networks
Breen, M. E.; Joy, S. T.; Baruti, O. J.; Beyersdorf, M. S.; Henley, M. J.; De Salle, S. N.; Ycas, P. D.; Croskey, A.; Cierpicki, T.; Pomerantz, W. C. K.; Mapp, A. K. Garcinolic Acid Distinguishes between GACKIX Domains and Modulates Interaction Networks. ChemBioChem. 2023, e202300439.
[86]
Design of Highly Fluorinated Peptides for Cell-based 19F NMR
Li, J.; Kirberger, S. E.; Wang, Y.; Cui, H.; Wagner, C. R.; Pomerantz, W. C. K. Design of Highly Fluorinated Peptides for Cell-Based 19F NMR. Bioconjugate Chem. 2023.
[85]
Fluorous Liquids for Magnetic Resonance-Based Thermometry with Enhanced Responsiveness and Environmental Degradation
Li, J.; Mundhenke, T. F.; Smith, T. G.; Arnold, W. A.; Pomerantz, W. C. K. Fluorous Liquids for Magnetic Resonance-Based Thermometry with Enhanced Responsiveness and Environmental Degradation. Anal. Chem. 2023.
[82]
From PROTAC to inhibitor: Structure-guided discovery of potent and orally bioavailable BET inhibitors
Koravovic, M.; Mayasundari, A.; Tasic, G.; Keramatnia, F.; Stachowski, T. R.; Cui, H.; Chai, S. C.; Jonchere, B.; Yang, L.; Li, Y.; Fu, X.; Hiltenbrand, R.; Paul, L.; Mishra, V.; Klco, J. M.; Roussel, M. F.; Pomerantz, W. CK.; Fischer, M.; Rankovic, Z.; Savic, V. Eur. J. Med. Chem. 2023, 251, 115246.
[81]
pH Effects Can Dominate Chemical Shift Perturbations in 1H, 15N-HSQC NMR Spectroscopy for Studies of Small Molecule/α-Synuclein Interactions
Pandey, A.K.; Buchholz, C.R.; Kochen, N.N.; Pomerantz, W.C.K.; Braun, A.R.; Sachs, J.N. ACS Chem. Neurosci. 2023, 14, 4, 800-808.
[80]
Design of Class I/IV Bromodomain-Targeting Degraders for Chromatin Remodeling Complexes
Zahid, H.; Costello, J. P.; Li, Y.; Kimbrough, J. R.; Actis, M.; Rankovic, Z.; Yan, Q.; Pomerantz, W. C. K. Design of Class I/IV Bromodomain-Targeting Degraders for Chromatin Remodeling Complexes. ACS Chem. Biol. 2023.
2022
[79]
Development of an N-Terminal BRD4 Bromodomain-Targeted Degrader
Divakaran, A.; Scholtz, C.R.; Zahid, H.; Lin, W.; Griffith, E.C.; Lee, R.E.; Chen, T.; Harki, D.A.; Pomerantz, W.C.K. ACS Med. Chem. Lett. 2022, TBA.
[78]
Finding Fluorine: Photoproduct Formation during the Photolysis of Fluorinated Pesticides
Bhat, A.P.; Pomerantz, W.C.K.; Arnold, W.A. Environ. Sci. Technol., 2022, TBA.
[77]
Development of a single culture E. coli expression system for the enzymatic synthesis of fluorinated tyrosine and its incorporation into proteins
Olson, N.M.; Johnson, J.A.; Peterson, K.E.; Henisch, S.C.; Marschall, A.P.; Smanski, M.J.; Carlson, E.E.; Pomerantz, W.C.K. J. Fluor. Chem., 2022, TBA.
[76]
Alternative Mechanisms for DNA Engagement by BET Bromodomain-Containing Proteins
Kalra, P.; Zahid, H.; Ayoub, A.; Dou, Y.; Pomerantz, W.C.K. Biochemistry. 2022, TBA.
[75]
Development of a Highly Responsive Organofluorine Temperature Sensor for 19F Magnetic Resonance Applications
Lee, A.L.; Pandey, A.K.; Chiniforoush, S.; Mandal, M.; Li, J.; Cramer, C.J.; Haynes, C.L.; Pomerantz, W.C.K. Anal. Chem. 2022, 94, 9, 3782–3790.
[74]
Tracking Fluorine during Aqueous Photolysis and Advanced UV Treatment of Fluorinated Phenols and Pharmaceuticals Using a Combined 19F-NMR, Chromatography, and Mass Spectrometry Approach
Bhat, A.P.; Mundhenke, T.F.; Whiting, Q.T.; Peterson, A.A.; Pomerantz, W.C.K.; Arnold, W.A. ACS Environ. Au, 2022, 2, 3, 242–252.
[73]
An Innovation 10 Years in the Making: The Stories in the Pages of ACS Medicinal Chemistry Letters
Altman, R.A.; Brai, A.; Golden, J.; La Regina, G.; Li, Z.; Moore, T.W.; Pomerantz, W.C.K.; Rajapaksa, N.S.; Adams, A.M. ACS Med. Chem. Lett. 2022, 13, 4, 513–514.
2021
[72]
A Structure-based Design Approach for Generating High Affinity BRD4 D1-Selective Chemical Probes
Cui, H.; Divakaran, A.; Hoell, Z.J.; Ellingson, M.O.; Scholtz, C.R.; Zahid, H.; Johnson, J.A.; Griffith, E.C.; Gee, C.T.; Lee, A.L.; Khanal, S.; Shi, K.; Aihara, H.; Shah, V.H.; Lee. R.E.; Harki, D.A.; Pomerantz, W.C.K. J. Med. Chem. 2022, 65, 3, 2342–2360
[71]
Dihydropyridine Lactam Analogs Targeting BET Bromodomains
Jiang, J.; Sigua, L.H.; Chan, A.; Kalra, P.; Pomerantz, W.C.K.; Schönbrunn, E.; Jun, Q.; Georg, G.I. ChemMedChem, 2021, 17, e2021004.
[70]
Site-Specific 5-Formyl Cytosine Mediated DNA-Histone Cross-Links: Synthesis and Polymerase Bypass by Human DNA Polymerase η
Pujari, S.S.; Wu, M.; Thomforde, J.; Wang, Z.A.; Chao, C.; Olson, N.M.; Erber, L.; Pomerantz, W.C.K.; Cole, P.; Tretyakova, N.Y. Angew. Chem. Int., 2021, 60, 26489 –26494.
[69]
New Design Rules for Developing Potent Cell-Active Inhibitors of the Nucleosome Remodeling Factor (NURF) via BPTF Bromodomain Inhibition
Zahid, H.; Buchholz, C.R.; Singh, M.; Ciccone, M.F.; Chan, A.; Nithianantham, S.; Shi, K.; Aihara, H.; Fischer, M.; Schönbrunn, E.; dos Santos, C.O.; Landry, J.W.; Pomerantz, W.C.K. J. Med. Chem. 2021, 64, 18, 13902–13917.
[68]
Super enhancer regulation of cytokine-induced chemokine production in alcoholic hepatitis
Liu, M.; Cao, S.; He, L.; Gao, J.; Arab, J.P.; Cui, H.; Xuan, W.; Gao, Y.; Sehrawat, T.S.; Hamdan, F.H.; Ventura-Cots, M.; Argemi, J.; Pomerantz, W.C.K.; Johnsen, S.A.; Lee, J.; Gao, F.; Ordog, T.; Mathurin, P.; Revzin, A.; Bataller, R.; Yan, H.; Shah, V.H. Nat. Commun, 2021, 12, 4560.
[67]
19F NMR viewed through two different lenses: ligand-observed and protein-observed 19F NMR applications for fragment-based drug discovery
Buchholz, C.R. and Pomerantz, W.C.K. RSC Chem. Biol., 2021, 2, 1312-1330.
[66]
Controlling Intramolecular Interactions in the Design of Selective, High-Affinity Ligands for the CREBBP Bromodomain
Brand, M.; Clayton, J.; Moroglu, M.; Schiedel, M.; Picaud, S.; Bluck, J.P.; Skwarska, A.; Bolland, H.; Chan, A.K.N.; Laurin, C.M.C.; Scorah, A.R.; See, L.; Rooney, T.P.C.; Andrews, K.H.; Fedorov, O.; Perell, G.; Kalra, P.; Vinh, K.B.; Cortopassi, W.A.; Heitel, P.; Christensen, K.E.; Cooper, R.I.; Paton, R.S.; Pomerantz, W.C.K.; Biggin, P.C.; Hammond, E.M.; Filippakopoulos, P.; Conway, S.J. J. Med. Chem., 2021, 64, 14, 10102–10123
[65]
4-Methyl-1,2,3-Triazoles as N-Acetyl-Lysine Mimics Afford Potent BET Bromodomain Inhibitors with Improved Selectivity
Cui, H.; Carlson, A.C.; Schleiff, M.A.; Divakaran, A.; Johnson, J.A.; Buchholz, C.R.; Zahid, H.; Vail, N.R.; Shi, K.; Aihara, H.; Harki, D.A.; Miller, G.P.; Topczewski, J.J.; Pomerantz, W.C.K. J. Med. Chem., 2021, 64, 14, 10497–10511
[64]
Potent inhibitors of toxic alpha-synuclein identified via cellular time-resolved FRET biosensors
Braun, A.R.; Liao, E.E.; Horvath, M.; Kalra, P.; Acosta, K.; Young, M.C.; Kochen, N.N.; Lo, C.H.; Brown, R.; Evans, M.D.; Pomerantz, W.C.K.; Rhoades, E.; Luk, K.; Cornea, R.L.; Thomas, D.D.; Sachs, J.N. NPJ Parkinsons Disease, 2021, 7 (52).
[63]
Soluble Methane Monooxygenase Component Interactions Monitored by 19F NMR
Jones, J.C.; Banerjee, R.; Shi, K.; Semonis, S.S.; Aihara, H.; Pomerantz, W.C.K.; Lipscomb, J.D. Biochemistry, 2021, 60, 25, 1995–2010.
[62]
Fragment-Based Ligand Discovery Using Protein-Observed 19F NMR: A Second Semester Organic Chemistry CURE Project
Bur, S.K.; Pomerantz, W.C.K.; Bade, M.L.; Gee, C.T. J. Chem. Educ. 2021, 98, 6, 1963–1973
[61]
Investigation of the Post-Synthetic Confinement of Fluorous Liquids Inside Mesoporous Silica Nanoparticles
Lee, A.L.; Lee, S.; Nguyen, H.; Cahill, M.; Kappel, E.; Pomerantz, W.C.K.; Haynes, C.H. Langmuir, 2021, 37, 17, 5222–5231.
[60]
Autophagy Dependent Sensitization of Triple Negative Breast Cancer Models to Topoisomerase II Poisons by Inhibition of The Nucleosome Remodeling Factor.
Tyutyunyk-Massey, L.; Sun, Y.; Dao, N.; Ngo, H.; Dammalapati, M.; Vaidyanathan, A.; Singh, M.; Haqqani, S.; Haueis, J.; Finnegan, R.; Xiaoyan, D.; Kirberger, S.; Bos, P.; Bandyopadhyay, D.; Pomerantz, W.; Pommier, Y.; Gewirtz, D. and Landry, J.W. Mol. Cancer Res., 2021, 19, 8, 1338–1349.
[59]
Opportunity knocks for uncovering the new function of an understudied nucleosome remodeling complex member, the bromodomain PHD finger transcription factor, BPTF
Zahid, H; Olson, N.M.; Pomerantz, W.C.K. Current Opinion in Chemical Biology, 2021, 67, 57-67.
2020
[58]
Protein–Protein Interaction Regulators: Pharmacological Regulation and Functional Significance of Chromatin Binding by BET Tandem Bromodomains
Olp, M.D.; Cui, H.; Pomerantz, W.C.K.; Smith, B.C. (2020) Pharmacological Regulation and Functional Significance of Chromatin Binding by BET Tandem Bromodomains In: Drug Discovery. Royal Society of Chemistry.
[57]
Endothelial p300 promotes portal hypertension and hepatic fibrosis through CCL2-mediated angiocrine signaling
Gao, J.; Wei, B.; Liu, M.; Hirsova, P.; Sehrawat, T.S.; Cao, S.; Hu, X.; Yaqoob, U.; Kang, N.; Cui, H.; Pomerantz, W.C.K.; Kostallari, E.; Shah, V.H. Hepatology, 2021, 73, 2468-2483.
[56]
Quantifying the Selectivity of Protein–Protein and Small Molecule Interactions with Fluorinated Tandem Bromodomain Reader Proteins
Kalra, P.; McGraw, L.; Kimbrough, J.R.; Pandey, A.K.; Solberg, J.; Cui, H.; Divakaran, A.; John, K.; Hawkinson, J.E.; Pomerantz, W.C.K. ACS Chem. Biol. 2020, 15, 3038-3049.
[55]
Selective N-terminal BRD4 bromodomain inhibitors by targeting non-conserved residues and structured water displacement
Pomerantz, W.C.K.; Cui, H.; Divakaran, A.; Pandey, A.; Johnson, J.A.; Zahid, H.; Hoell, Z.J.; Ellingson, M.O.; Shi, K.; Aihara, H.; Harki, D.A. Angew. Chem. Int. Ed., 2020, 60, 1220-1226.
[54]
Combined Protein- and Ligand-Observed NMR Workflow to Screen Fragment Cocktails against Multiple Proteins: A Case Study Using Bromodomains
Johnson, J.A.; Olson, N.M.; Tooker, M.J.; Bur, S.K.; Pomerantz, W.C.K. Molecules, 2020, 25(17), 3949.
[53]
New inhibitors for the BPTF bromodomain enabled by structural biology and biophysical assay development
Ycas, P.D; Zahid, H.; Chan, A.; Olson, N.M; Johnson, J.A; Talluri, S.K; Schonbrunnb, E.; Pomerantz, W.C.K. Org. Biomol. Chem. 2020, 18, 5174-5182.
[52]
NMR Analyses of Acetylated H2A.Z Isoforms Identify Differential Binding Interactions with the Bromodomain of the NURF Nucleosome Remodeling Complex
Olson, N.; Kroc, S.; Johnson, J.; Zahid, H.; Ycas, P.D.; Chan, A.; Kimbrough, J.; Kalra, P.; Schönbrunn, E.; Pomerantz W.C.K. Biochemistry, 2020. 59, 20, 1871–1880
[51]
Efficient Synthesis of 1,4-Thiazepanones and 1,4-Thiazepanes as 3D Fragments for Screening Libraries
Pandey, A.K.; Kirberger, S.E.; Johnson, J.A.; Kimbrough, J.R; Partridge D.K.D; Pomerantz, W.C.K. Org Lett. 2020, 22, 10, 3946–3950
[50]
Multidimensional Nanoparticle Characterization Through Ion Mobility-Mass Spectrometry
Li, C; Lee, A; Chen, X; Pomerantz, W.C.K; Haynes, C.L.; Hogan Jr, C.J.; Anal. Chem. 2020, 92 (3), 2503-2510
2019
[49]
Topics in Medicinal Chemistry: Applied Biophysics for Bromodomain Drug Discovery
Pomerantz W.C.K., Johnson J.A., Ycas P.D. (2019) Applied Biophysics for Bromodomain Drug Discovery. In: . Topics in Medicinal Chemistry. Springer, Berlin, Heidelberg
[48]
2-Fluorotyrosine is a valuable but understudied amino acid for protein-observed 19F NMR
Ycas, P.; Wagner, N.; Olson, N.M.; Fu, R.; Pomerantz, W.C.K. J. Biomol. NMR. 2019, 74, pp 61–69
[47]
Evaluating the Advantages of Using 3D-Enriched Fragments for Targeting BET Bromodomains
Johnson, J.A.; Nicolaou, C.A.; Kirberger, S.E.; Pandey, A.K.; Hu, H.; Pomerantz, W.C.K. ACS Med. Chem. Lett. 2019, 2019, 10 (12), 1648-1654
[46]
SAR by (Protein-Observed) 19F NMR
Divakaran, A; Kirberger, S.E.; Pomerantz, W.C.K. Acc. Chem. Res. 2019, 52 (12), 3407-3418
[45]
Systematically Mitigating the p38α Activity of Triazole-based BET Inhibitors
Carlson, A.S.; Cui, H.; Divakaran, A.; Johnson, J.A.; Brunner, R.M.; Pomerantz, W.C.K.; Topczewski J.J. ACS. Med. Chem. Lett. 2019, pp. 1296-1301
[44]
Selectivity, ligand deconstruction, and cellular activity analysis of a BPTF bromodomain inhibitor
S.E. Kirberger, P.D. Ycas, J.A. Johnson, C. Chen, M.F. Ciccone, R.W.L. Woo, A.K. Urick, H. Zahid, K. Shi, H. Aihara, S.D. McAllister, M. Kashani-Sabet, J. Shi, A. Dickson, C. O. dos Santos, W.C.K. Pomerantz. Org. Biomol. Chem., 2019, 17, pp 2020-2027
2018
[43]
Design, Synthesis, and Characterization of a Fluorescence Polarization Pan-BET Bromodomain Probe
C.N. Paulson, X. Guan, A.M. Ayoub, A. Chan, R.M. Karim, W.C.K. Pomerantz, E. Schönbrunn, G.I. Georg, J.E. Hawkinson. ACS Med. Chem. Lett, 2018, 9 (12), pp 1223–1229
[42]
Molecular Basis for the N-Terminal Bromodomain and Extra Terminal (BET) Family Selectivity of a Dual Kinase-Bromodomain Inhibitor
A. Divakaran, S.K. Talluri, A.M. Ayoub, N. Mishra, H. Cui, J.C. Widen, N. Berndt, J. Zhi, A. Carlson, J. Topczewski, E. Schonbrunn, D. Harki, W.C.K. Pomerantz. J. Med. Chem, 2018, 61 (20), pp 9316–9334
[41]
Dual Labeling of the CBP/p300 KIX domain for 19F NMR leads to identification of a new small molecule binding site
C.T. Gee, K.E. Arntson, E.J. Koleski, R.L. Staebell, W.C.K. Pomerantz. ChemBioChem, 2018, 19 (9), 963-969.
VIP paper
2017
[40]
Specific Acetylation Patterns of H2A.Z Form Transient Interactions with the BPTF Bromodomain
G.T. Perell, N.K. Mishra, B. Sudhamalla, P.D. Ycas, K. Islam, and W.C.K. Pomerantz. Biochemistry, 2017, 56 (35), pp 4607–4615
[39]
Tuning Sulfur Oxidation States on Thioether-Bridged Peptide Macrocycles for Modulation of Protein Interactions
G.T. Perell, R. Staebell, M. Hairani, A. Cembran, and W.C.K. Pomerantz. ChemBioChem, 2017, 18 (18), 1836-1844
[38]
BET Bromodomain Inhibitors With One-Step Synthesis Discovered from Virtual Screen
A.M. Ayoub, L.M.L. Hawk, R.J. Herzig, J. Jiang, A.J. Wisniewski, C.T. Gee, P. Zhao, J. Zhu, N. Berndt, N.K. Offei-Addo, T.G. Scott, J. Qi, J.E. Bradner, T.R. Ward, E. Schonbrunn, G.I. Georg, and W.C.K. Pomerantz. J. Med. Chem. 2017, 60 (12), 4806-4817
[37]
Oxygen Sensing with Perfluorocarbon-Loaded Ultraporous Mesostructured Silica Nanoparticles
A.L. Lee, C.T. Gee, B.P. Weegman, S.A. Einstein, A.R. Juelfs, H.L. Ring, K. R. Hurley, S.M. Egger, G. Swindlehurst, M.G. Garwood, W.C.K. Pomerantz, and C.L. Haynes ACS Nano, 2017, 11 (6), 5623-5632
[36]
BPTF Maintains Chromatin Accessibility and the Self-Renewal Capacity of Mammary Gland Stem Cells
W.D. Frey, A. Chaudhry, P.F. Slepicka, A.M. Ouellette, S.E. Kirberger, W.C.K. Pomerantz, G.J. Hannon, and C.O. dos Santos. Stem Cell Reports, 2017, 9 (1), 23-31.
Referenced on Science Daily
[35]
Throwing away the cookbook: implementing Course-based Undergraduate Research Experiences (CUREs) in Chemistry
J.M. Heemstra, R. Waterman, J.M. Antos, P.J. Beuning, S.K. Bur, L. Columbus, A.L. Feig, A.A. Fuller, J.G. Gillmore, A.M. Leconte, W.C.K. Pomerantz, J.A. Prescher, L.M. Stanley, ACS Symposium Series, 2017, Vol. 1248, Chapter 3, 33–63
[34]
Quantifying Protein Concentrations using Smartphone Colorimetry: A New Method for an Established Test
C.T. Gee, E. Kehoe, W. C.K. Pomerantz, R.L. Penn, J. Chem. Educ., 2017, 94 (7), 941-945.
[33]
Synthesis of Intrinsically Disordered Fluorinated Peptides for Modular Design of High-Signal 19F MRI Agents
S.E. Kirberger, S.D. Maltseva, J.C. Manulik, S.A. Einstein, B.P. Weegman, M. Garwood, and W. C.K. Pomerantz Angew. Chem. Int. Ed., 2017, 56, 6440-6444.
[32]
Meeting Proceedings ICBS2016 - Translating the Power of Chemical Biology to Clinical Advances
Y. Kuriki, T. Komatsu, P.D. Ycas, S.K. Coulup, E.J. Carlson, W. C.K. Pomerantz, ACS Chem. Biol., 2017, 12, 869-877.
2016
[31]
Paramagnetic Relaxation Enabling Approach Protein-Observed 19F NMR as an Enabling Approach for Efficient Fragment Screening
L.M.L. Hawk, C.T. Gee, A.K. Urick, H. Hu, W. C.K. Pomerantz, RSC Adv., 2016, 6, 95715-95721.
[30]
Protein-Observed Fluorine NMR is a Complementary Ligand Discovery Method to 1H CPMG Ligand-Observed NMR
A.K. Urick, L. Jimenez, J. Espinosa, H. Hu, W. C.K. Pomerantz, ACS. Chem. Biol., 2016, 11, (11), 3154-3164.
[29]
Oxidation Increases the Strength of the Methionine-Aromatic Interaction
A.K. Lewis, K. M. Dunleavy, T.L. Senkow, C. Her, B.T. Horn, M.A. Jersett, R. Mahling, M.R. McCarthy, G.T. Perell, C.C. Valley, C.B. Karim, J. Gao, W. C.K. Pomerantz, D.D. Thomas, A. Cembran, A. Hinderliter, J.N. Sachs, Nat. Chem. Biol., 2016, 12, 860-866.
Cited in a review from Prof. Marcey Waters
[28]
Prediction of 19F NMR Chemical Shifts in Labeled Proteins: Computation Protocol and Case Study
W.C. Isley III, A.K. Urick, W. C.K. Pomerantz, C. J. Cramer. Mol. Pharm., 2016, 13, 2376-2386.
[27]
Protein-Observed 19F NMR for Fragment Screening, Affinity Quantification, and Druggability Assessment
C.T. Gee, K.E. Arntson, A.K. Urick, N.K. Mishra, L.M.L. Hawk, A. Wisniewski, W. C.K. Pomerantz. Nat. Protoc. 2016, 11, 1414-1427.
Referenced on Practical Fragments
[26]
Protein-Observed Fluorine NMR: A Bioorthogonal Approach for Small Molecule Discovery
K. E. Arntson, W. C. Pomerantz. J. Med. Chem. 2016, 59, (11), 5158-5171.
Referenced on Practical Fragments
2015
[25]
Dual Screening of BPTF and Brd4 Using Protein-Observed Fluorine NMR Uncovers New Bromodomain Probe Molecules
A. K. Urick, L. M. L. Hawk, M. K. Cassel, N. K. Mishra, S. Liu, N. Adhikari, W. Zhang, C. O. dos Santos, J. L. Hall, W. C. Pomerantz. ACS. Chem. Biol. 2015, 10 (10), 2246-2256.
(Ranked one of the most read articles in ACS Chem. Biol. during July)
[24]
Fragment Screening and Druggability Assessment for the CBP/p300 KIX Domain Via Protein Observed 19F NMR
C. T. Gee, E. J. Koleski, W. C. Pomerantz. Angew. Chem. Int. Ed. 2015, 54 (12), 3734-3739.
Favorably blogged on Practical Fragments
2014
[23]
Fluorinated aromatic amino acids are sensitive probes for bromodomain ligand interactions
N. K. Mishra, A. K. Urick, S. W. Ember, E. Schönbrunn, W. C. Pomerantz. ACS. Chem. Biol. 2014, 9 (12), 2755-2760.
[22]
FP Tethering: a screening technique to rapidly identify compounds that disrupt protein-protein interactions
J. M. Lodge, J. T. Rettenmaier, J. A. Wells, W. C. Pomerantz*, A. K. Mapp*, MedChemComm, 2014, 5, 370-375.
Recommended for special significance to the field by Faculty of 1000 on F1000prime
Among the top ten most downloaded articles in the journal from April to June 2014.
Pre-Pomerantz Group Publications
21. "Ordering a disordered protein via a small molecule stabilizer", N. Wang, C. Y. Majmudar,W. C. Pomerantz, J. K. Gagnon, J. D. Sadowsky, J. L. Meagher, T. K. Johnson, J. A. Stuckey, C. L. Brooks III, J. A. Wells, A K. Map p, J. Am. Chem. Soc. 2013, 135, 3363-3366 Featured as a JACS spotlight piece
20. "Sekikaic Acid and Lobaric acid target a dynamic interface of the coactivator CBP/p300" C.Y. Majmudar * J. W. Hojfeldt, * C. Arevang, W.C. Pomerantz, P.J. Schultz, J. K. Gagnon, L. C. Cesa, C. H. Doss, S. P. Rowe, T. Cierpicki, C. L. Brooks III, D. H. Sherman, A. K. Mapp, Ang. Chem. Int. Ed. 2012, 51, 11258 *rated as a "Highly Important Paper"
19. "Profiling the Dynamic Interfaces of Fluorinated Transcription Complexes for Ligand Discovery and Characterization" W.C. Pomerantz , N. Wang; R. Wang, A. K. Lipinksi, T. Cierpicki, A. K. Mapp. ACS. Chem. Biol., 2012, 7, 1345- 50. See "Highlighting our Authors" in the same issue
18. "Lyotropic Liquid Crystals from ACHC-Rich β -peptides", W. C. Pomerantz, V. M. Yuwono, R. Drake, J. D. Hartgerink, N. L. Abbott, S. H. Gellman, J. Am. Chem. Soc. 2011, 133, 13604-13.
17. "Lyotropic liquid crystalline phases from helical β -peptides as alignment media", C. Thiele; W. C. Pomerantz, N. L. Abbott; S. H. Gellman, Chem. Comm., 2011, 47, 502-4
16. "Transcriptional Tools: Small Molecules for Modulating CBP KIX-dependent Transcriptional Activators", C. A. Bates; W. C. Pomerantz; A. K. Mapp; Biopolymers, 2011, 95, 17-23
15. "Streamlined monitoring of backbone thioester exchange by 19F NMR" W. C. Pomerantz, *E. B. Hadley, *C. G. Fry, S. H. Gellman, *These authors contributed equally. ChemBioChem 2009,10, 2177-81.
14. "Pre-clinical development of a bi-functional, cancer cell homing, PKC-epsilon in hibitory peptide for treatment of head William Pomerantz, Ph.D Curriculum Vitae 3 and neck cancer." L. W. Bao, M. A. Gorin, M. Zhang, A. C. Ventura, W. C. Pomerantz, S. D. Merajver, T. N. Teknos, A. K. Mapp, Q. Pan Cancer Res. 2009, 69, 5829-34.
13. "Effect of sequence and structural properties on 14-helical β-peptide activity against Candida albicans planktonic cells and biofilms" A. J. Karlsson, W. C. Pomerantz, K. J. Neilsen, S. H. Gellman, S. P. Palecek, ACS Chem. Biol. 2009, 4, 567-79.
12. "A Rationally Designed Aldolase Foldamer" M M. Muller, M. A. Windsor, W. C. Pomerantz, S. H. Gellman, D. Hilvert, Angew. Chem. Int. Ed. 2009, 48, 922-5.
11. "Characterization of nanofibers formed by self-assembly of β-peptide oligomers using small angle x-ray scattering."C. L. Pizzey, W. C. Pomerantz, B.- J. Sung, V. M. Yuwono, J. D. Hartgerink, A. Yethiraj, S. H. Gellman, N. L. Abbott, J. Chem. Phys., 2008, 129,095103-1-8.
10. "Distinctive circular dichroism signature for 14-helix-bundle formation by β-peptides." W. C. Pomerantz, T. L. Grygiel, J. R. Lai, S. H. Gel lman, Org. Lett. 2008, 10, 1799-1802.
9. "Nanofibers and lyotropic liquid crystals from a class of self-assembling β-peptides" W. C. Pomerantz, C. L. Pizzey, V. M. Yuwono, J. D. Hartgerink, N. L. Abbott, S. H. Gellman, Angew. Chem., 2008, 47, 1241-4.
8. "Comparisons of design strategies for promotion of 14-helix stability in water", E. Vaz, W.C. Pomerantz, M. Geyer, S. H. Gellman, L. Brunzveld, ChemBioChem, 2008, 9, 2254-59.
7. "Origins of the high 14-helix propensity of cyclohexyl-rigidified residues in β-peptides."M.- R. Lee, T. L. Raguse, M. Schinnerl, W. C. Pomerantz, X. Wang, P. Wipf, S. H. Gellman, Org. Lett. 2007, 9, 1801-4.
6. "Sequence dependent behavior of amphiphilic β-peptides on gold surfaces."W. C. Pomerantz, K. D. Cadwell, Y.-J. Hsu, S. H. Gellman, N. L. Abbott, Chem. Mater. 2007, 19, 4436-41.
5. "Practical synthesis of enantiomerically pure β-amino acids via proline-catalyzed diastereoselective aminomethylation of aldehydes." Y. Chi, E. P. English, W. C. Pomerantz, W. S. Horne, L. A. Joyce, L. R. Alexander, W. S. Fleming, E. A. Hopkins, S. H. Gellman, J. Am. Chem. Soc. 2007, 129, 6050-5.
4. "Antifungal activity from 14-helical β-peptides."A. J. Karlsson, W. C. Pomerantz, S. H. Gellman, S. P. Palecek, J. Am. Chem. Soc. 2006, 128, 12630-1.
3. "Lyotropic liquid crystals from designed helical β-peptides." W. C. Pomerantz, S. H. Gellman, N. L. Abbott, J. Am. Chem. Soc. 2006, 128, 8730-1.
2. "Donor-substituted cyanoethynylethenes: pi-conjugation and band-gap tuning in strong charge-transfer chromophores." N. N. P. Moonen; W. C. Pomerantz, R. Gist, C. Boudon, J.-P. Gisselbrecht, T. Kawai, A. Kishioka, M. Gross, M. Irie, F. Diederich, Chem. Eur. J., 2005, 11, 3325-41.
1. "Comparing isotope effects and rates for the methanolic sodium methoxide reactions of 9- R-fluorene to those for p-CF3C6H4CHClR (R = CH2Cl, CH2F and CF3)." H. F. Koch, W. C. Pomerantz, E. L. Ruggles, M. Van Laren, A.- M. Van Roon, CCCC., 2002, 67, 1505-16.